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Is IPO Underperformance a Peso Problem?

Andrew Ang, Li Gu, and Yael V. Hochberg*

Abstract

Recent studies suggest that the underperformance of IPOs in the post-1970 sample may
be a small sample effect or "Peso problem." That is, IPO underperformance may result
from observing too few star performers ex post than were expected ex ante. We develop
a model of IPO performance that captures this intuition by allowing returns to be drawn
from mixtures of outstanding, benchmairk, or poor performing states. We estimate the
model under the null of no ex ante average IPO underperformance and construct small
sample distributions of various statistics measuring IPO relative performance. We find that
small sample biases are extremely unlikely to account for the magnitude of the post-1970
IPO underperformance observed in data.

I. Introduction

Since Ritter's (1991) seminal study, many papers document that firms un-
derperform relative to benchmark indices or to similar stocks following their ini-
tial public offerings (IPOs).' The study of IPO long-run average underperfor-
mance is important as IPO long-run underperformance may indicate a possible
informational inefficiency in capital allocation, the influence of behavioral fads in
markets, or the existence of trading opportunities that produce superior abnormal
returns.

However, the acceptance of the existence of an IPO underperformance ef-
fect is far from universal. In a recent paper, Schultz (2003) argues that more IPO
activity follows successful IPOs and that measuring the performance of IPOs in
event time spuriously induces IPOs to have low average returns even if there are
no average abnormal returns ex ante. Schultz claims that there is no underperfor-
mance of IPOs in calendar time. Gompers and Lemer (2003) convincingly show
that, in an earlier sample from 1935 to 1972, IPOs do not underperform aggre-
gate benchmarks in contrast to the post-1970 sample initially examined by Ritter
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'Recent summaries of the large IPO literature are provided by Ritter (1995) and Ritter and Welch
(2002).
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(1991), Gompers and Lemer suggest that the poor performance of offerings in
the NASDAQ era could simply arise by chance. The Gompers and Lerner (2003)
study implies that the IPO underperformance in the last three decades may be just
a small sample effect. That is, there may be no IPO underperformance ex ante,
but in the post-1970 period we may have just drawn a small sample where too
many IPOs perform very poorly ex post,

A small sample explanation to tbe IPO underperformance puzzle is initially
suggested, but not investigated, by Lougbran and Ritter (1995) who propose that
IPOs initially have higb valuations because investors are betting on long sbots—
that they have identified the next Microsoft, TCB Y, or eBay, If these investors are
rational and there is no underperformance ex ante, an IPO underperformance in
a small sample will result if the small sample does not contain enough draws of
these high performing IPOs, Tbat is, ex post, the sample of IPOs is small enough
that tbere is a marked difference between tbe small sample distributions of tbe
statistics measuring IPO performance and tbeir long-run asymptotic distributions,
where in the population distribution, IPOs do not underperform.

As a simple example, suppose tbat the true population of IPOs has a small
proportion (say 2%) of star performers that have extraordinarily high retums. The
majority of IPOs (say 70%) exhibit, on average, zero abnormal retums, while
a minority of IPOs (the remaining 28%) display, on average, low abnormal re-
tums. In a small sample, we may over-sample from tbe distributions representing
zero, or low, abnormal retums, Tbis implies tbat we may easily under-sample
star performing firms (say 1% in tbe sample, as opposed to 2% in the population
distribution). In the small sample, when we compute average long-mn returns
of IPOs, we find an IPO underperformance, but tbis underperformance arises be-
cause the small sample distribution does not match tbe population distribution of
IPOs, Hence, tbe average underperformance of IPOs may be due to observing too
few spectacularly successful IPOs in the data than we expected ex ante from tbe
population distribution.

In this study, we make three main contributions to tbe IPO literature. First,
we sbow that tbe post-1970 sample of IPOs exbibits significant underperformance
in botb event time and calendar time, Scbultz (2003) considers calendar-time re-
tums on IPOs less tban 60 montbs old following the offering and finds that the av-
erage abnormal calendar-time retum is close to zero. Building on Schultz (2003),
we also consider well-defined trading strategies of an IPO portfolio consisting of
IPOs that have gone public witbin a particular formation period, but we consider
holding period retums of tbis portfolio over horizons longer than one month. In
particular, when we consider holding period returns longer than six months, we
find tbat IPO underperformance reappears, Scbultz (2003) misses this calendar-
time IPO underperformance by only considering a short holding period horizon.
Similarly, we find that IPO underperformance is sensitive to the portfolio for-
mation period. While Scbultz (2003) finds no underperformance for a portfolio
formation period of 12 montbs, IPO underperformance reemerges wben we ex-
pand tbe portfolio formation period to include IPOs that have gone public over
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tbe last two to tbree years. Hence, we show that the Ritter (1991) finding of low
IPO retums remains robust to measurement in botb event and calendar time,^

Second, we introduce a novel model of retums over time for IPO firms. We
build a Markov model tbat captures the intuition of the distribution of IPO retums
being a mixture of star performers, average performers, and firms tbat underper-
form. The distribution of star performers bas expected retums that are high, but
this occurs with low probability. Average or underperforming IPO retums are
drawn with mucb bigber probability, and tbese bave average zero and negative
excess retums, respectively. At each point in time, an IPO's retum is drawn from
one of these three distributions, and, following Hamilton (1989), which distri-
bution prevails at each point in time is determined by a Markov variable tbat is
unobserved to the econometrician. The Markov states are persistent, so that a
firm that has experienced Microsoft-type draws in the past is more likely to draw
Microsoft-type retums in the future.

Our flexible Markov mixture data generating process (DGP) can capture
small sample bias or Peso problem effects. As Evans (1996) demonstrates, Markov
models are ideal for capturing differences between population distributions and
sample realizations because the estimation method permits tbe implied proba-
bilities of drawing regimes (tbe Markov process) to be inferred endogenously.
This allows the parameters of each distribution (outperforming, average, or un-
derperforming) to be estimated under the null of zero average abnormal retums,
Markov models bave been previously used to investigate Peso problems in time-
series data. For example, Bekaert, Hodrick, and Marsball (2001) examine a Peso
problem explanation for tbe expectations hypothesis in interest rates, Evans and
Lewis (1995) examine small sample issues in unbiasedness bypotbesis tests with
exchange rate data, and Rietz (1988) and Cecchetti, Lam, and Mark (1993) ar-
gue that tbe equity premium in stock market data is higb because of rare adverse
events. In contrast to these studies, we analyze a small sample explanation in the
cross section of IPO retums using event-time retums.

Third, we find that small sample bias is very unlikely to account for tbe
magnitude of IPO underperformance observed in tbe post-1970 sample. We es-
timate the Markov switching model using Gibbs sampling, wbicb is a fast and
tractable Bayesian estimation technique, Gibbs sampling is an estimation method
that is particularly suitable for problems where likelihood functions are difficult
to derive or maximize, or where only conditional rather than full likelihood dis-
tributions are available,-' We use tbe model estimates to generate small sample
distributions of IPO long-borizon abnormal returns under tbe null that there is
no ex ante IPO underperformance. We compare the small sample distributions

^Dahlquist and de Jong (2003) and Viswanathan and Wei (2003) argue that Sehultz's (2003) find-
ings are due to an extreme assumption that the number of IPO events drops to zero after a negative
abnormal retum. This non-stationadty causes Sehultz's abnormal retum estimator to be not well de-
fined in large samples. However, Viswanathan and Wei (2004) show that in the Sehultz (2003) setting,
event-time retums are consistent estimators of the null hypothesis of market efficiency and that event
retums asymptotically converge to zero under standard assumptions. In contrast, to these studies,
we show IPO underperformance in calendar time is sensitive to the portfolio formation strategy and
reappears when longer formation periods or holding periods are considered,

•'See Kim and Nelson (1999) for an overview of Markov switching models and the Gibbs sampling
procedure.
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with the estimated point statistics of IPO long-horizon returns from actual data.
We find that the small sample distributions implied by the model do not remotely
come close to encompassing the long-horizon point statistics in the data. Hence,
we fail to find a small sample explanation for the IPO underperformance effect
post-1970, suggesting that the IPO underperformance phenomenon is not "simply
an historical accident" (Gompers and Lerner (2003), p. 1931).

Our approach is related to the statistical inference problems in long-horizon
returns raised by Conrad and Kaul (1993), Barber and Lyon (1997), Kothari and
Warner (1997), and Brav (2000). These authors show that statistics measuring
long-run performance relative to a benchmark, such as buy-and-hold and cumu-
lative abnormal returns, are subject to severe small sample biases. However, they
do not explicitly consider DGPs that impose the null of no underperformance in a
model designed to capture Peso problems.

In our analysis, we concentrate on using broad market-based benchmarks
because it is uncertain which risk adjustment is appropriate at the firm level. For
example, Brav and Gompers (1997) and Brav, Geczy, and Gompers (2000) argue
that if risk adjustments are made to equity returns on the basis of size and book-
to-market ratios, then the IPO underperformance effect fails to appear.'' Eckbo
and Norli (2005) argue for additional controls for leverage and liquidity. On the
other hand, Loughran and Ritter (2000) show that correcting for abnormal per-
formance using Fama and French (1993) size and book-to-market factors is in-
appropriate because the Fama-French factors are contaminated by the effects of
new firm issues. Because of these issues, Ritter and Welch (2002) stress that the
IPO long-run underperformance puzzle is not one of selecting appropriate firm
risk adjustments, but rather that IPO firms, or firms with characteristics similar
to IPOs, perform poorly compared to market-based benchmarks. Schultz (2003)
also employs aggregate benchmarks, and Gompers and Lerner (2003) document
that there is no IPO long-run underperformance relative to broad-based indices in
the pre-NASDAQ sample.

The remainder of the paper is organized as follows. Section II describes
the data used in the paper and presents summary statistics of IPO firm long-run
returns for event- and calendar-time portfolios. Section III describes the Markov
model underlying our small sample analysis and discusses the estimation results.
In Section IV, we apply the model to investigate if the IPO underperformance
post-1970 can be explained by small sample bias. Section V concludes.

II. Data

Our data consists of two IPO samples. The first sample, which we refer
to as the full sample, consists of firms going public from 1970 to 1996. These
firms are drawn from the Securities Data Corporation (SDC) Global New Issues
database. To be included in the sample, an IPO firm must have an offer price
greater than one dollar and must be subsequently listed on the Center for Research
in Securities Prices (CRSP) NYSE-AMEX-NASDAQ tapes within six months of

''Similar appropriate benchmarking arguments are made by Eckbo, Masulis, and Norli (2000) for
the underperformance of seasoned public offerings.
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the offering date. In line with common practice, we exclude from our sample all
unit offerings, REITs, ADRs, limited partnerships, and public offerings of closed-
end funds. The full sample consists of 4,843 IPOs taking place during the period
1970 to 1996. The second sample, obtained from Jay Ritter's IPO database at
www.iporesources.org comprises 1,524 firms conducting IPOs in the 1975-1984
period.^ We concentrate primarily on reporting our results for the full sample,
and comment on how our methodology fares on Ritter's sample. To describe our
data, we first confirm the existence of an IPO underperformance phenomenon in
event time in Section A, following the original findings of Ritter (1991), and in
calendar time in Section B, contrary to the findings of Schultz (2003).

A. Event-Time IPO Returns

Following standard practice, we construct benchmark-adjusted returns for
stock i relative to benchmark m in month t as

(1) ri,{m) = Ri,-Rm,

where /?,-, is the raw retum of firm i in event month t and /?„, is the benchmark
retum in event month t. We compute IPO benchmark-adjusted retums as the raw
retums on an IPO minus the benchmark retum for the corresponding period. We
use three benchmarks: i) the CRSP value-weighted NYSE and AMEX index,
ii) the CRSP value-weighted NASDAQ index, and iii) the CRSP smallest decile
of NYSE firms. These benchmarks are used in many IPO studies as they represent
a set of aggregate indices that are easily investable and represent benchmark al-
ternatives to an IPO investment. We compute retums in equation (1) from the first
listing on the CRSP daily retum tapes. Event months are defined as successive
21 trading day periods. Thus, retums for the first month comprise the retums on
listed days 2-22, the second month of retums comprises the retums of listed days
23—'V3, and so on.

Following Ritter (1991), we define a cumulative average benchmark m-adjust-
ed excess retum (CAR) to event-month horizon s as

(2) C A R . H =

where
1 "'

AR,{m) = -^ru{m)

/=i

and n, is the number of stocks in the IPO portfolio in event month t. Thus, AR, (m)
is the average benchmark-adjusted retum, where the averaging is done across all
IPO firms in event month t. Hence, the CARs(m) statistic cumulates the average
abnormal IPO retums across various horizons s. When a firm is delisted during
event month t, the return of that IPO is computed until the day of delisting. We
use the notation CAR(NYSE/AMEX), CAR(NASDAQ), and CAR(SMALL) to

^Ritter's (1991) original sample size is 1,526, Of these, we failed to match two firms (Area
Communication and Advanced Semiconductor) to returns in CRSP,
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indicate cumulative abnormal retums calculated using excess retums relative to
the NYSE and AMEX index, the NASDAQ index, and the CRSP smallest size
decile, respectively.

We also compute cumulative excess holding period retums (CHPs) of stock i
relative to benchmark m until the earlier of horizon event month,? or its delisting:

s

(3) CHP,,(m) =

where ri,{m) is the excess retum of stock i relative to benchmark m defined in
equation (1). The one-period excess retum, r,,(m), is the retum to a zero-cost
strategy that goes long an IPO and shorts the benchmark m portfolio. Cumulating
these retums provides the long-horizon retum to this zero-cost strategy. We report
the average CHP across IPO firms:

(4) CHP,(m) = -
"^ ,=1

Since the CHPs are holding period retums, to easily compare CHPs across differ-
ent horizons we compute annualized CHP statistics using the transformation.

(5) CHP,(m)™""''"^^d = ( l - i -CHP,(m))T-1.

Similar to the notation for the CARs, we use the notation CHP(NYSE/AMEX),
CHP(NASDAQ), and CHP(SMALL) to denote CHPs computed relative to the
various benchmarks. We use both the CAR and CHP statistics to measure IPO
performance.

Table 1 reports various summary statistics of event-time IPO retums. We
tum first to the number and proportion of surviving IPOs, presented at the top
of the table. There is remarkable attrition in the number of IPO firms surviving
after the date of their IPO. While the majority (over 98%) of IPOs survive their
first year, 39% of IPOs delist within five years. This implies that the delisting
process is an important part of modeling the distribution of IPO returns, which
we explicitly take into account in our empirical framework.^

Second, the CARs clearly show the IPO underperformance effect. As can
be seen from the mean CARs reported in Panel A of Table 1, IPOs underperform
as early as after one year post-issue in event time. For example, at a 12-month
horizon, the average CAR is -^6% (-5%) relative to small stocks (NASDAQ).
After 60 months, the value of the CAR statistic is a dramatic —16% relative to
small stocks, - 2 3 % relative to NYSE/AMEX, and - 3 1 % relative to NASDAQ.
Using Ritter's (1991) Nstatistics, all the CAR /-statistics corresponding to these
very large negative CAR point estimates are highly significant. However, these
f-statistics must be interpreted with care because Barber and Lyon (1997) show

*Note that not all delistings of IPO firms are necessarily due to bankruptcy or liquidation, A
significant proportion of firms delist due to merger or acquisition activity. The event-time CAR and
CHP statistics do not need to be adjusted for delisting retums because these statistics take data only up
to the delisting date. In contrast, calendar-time retums must be adjusted for a delisting retum because
they represent investable portfolio retums as we discuss below.
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TABLE 1

Event-Time IPO Returns

Panel A reports summary statistics of the benchmark-adjusted cumulative average returns (CAR) as in equation (2),
which foliowing Ritter (1991) are not annuaiized. Panel B reports the annualized cumuiative abnormai excess hoiding
period returns (CHP) in equation (5) of benchmark returns. We report (-statistics, computed foliowing Ritter (1991), in
parentheses under the corresponding mean. The benchmarks NYSE/AMEX, NASDAQ, and SMALL are the CRSP value-
weighted NYSE/AMEX index, the vaiue-weighted NASDAQ index, and the smailest NYSE size deoiie, respectiveiy. We
denote significance at the 5% and 1% ievels with" and " , respectiveiy. The sample period is January 1970 to December
1996 with the last five-year period ending at December 2001.

Event Month

Number of surviving firms
Percentage of surviving firms

Panel A.

CAR(NYSE/AMEX)

CAR(NASDAQ)

CAR(SMALL)

Panel B.

CHP(NYSE/AMEX)^"™ '̂'̂ '"'

CHP(NASDAQ)=""" '̂'̂ '̂̂

CHP(SMALL)^"""='''̂ "'''

1

4,843
100%

0.008"
(2.76)

0.010"
(3.66)

0.007*
(2.46)

0.096"
(3.16)

0.127"
(4.22)

0.083"
(2.81)

12

4,767
98.4%

- 0 . 0 7 1 "
(-7.30)

-0.052"
(-5.45)

-0.060"
(-6.26)

-0.046"
(-5.28)

-0.028"
(-3.18)

-0.037"
(-4.32)

24

4,369
90.2%

-0.164"
(-11.5)

-0.156"
(-11.1)

-0.146"
(-10.3)

-0.049"
(-7.17)

-0.044"
(-6.75)

- 0 . 0 4 1 "
(-6.07)

36

3,882
80.2%

-0 .221 "
(-11.9)

-0.243"
(-13.3)

-0.170"
(-9.24)

-0.044"
(-7.72)

-0.045"
(-8.49)

-0.028"
(-4.50)

48

3,411
70.4%

- 0 . 2 3 1 "
(-10.1)

-0.305"
(-13.5)

-0.156"
(-6.87)

-0.033"
(-2.87)

-0 .041 "
(-8.32)

-0.013*
(-2.10)

60

2,966
61.2%

-0.227**
(-8.26)

-0.313**
(-11.6)

-0.158"
(-5.82)

-0.029**
(-5.38)

-0.036**
(-7.11)

-0.014*
(-2.22)

that the small sample distributions for the CAR statistics are severely skewed
compared to Ritter's (1991) asymptotic distributions. In our empirical work, we
directly constmct a small sample distribution under the null of zero IPO under-
performance and directly measure the significance of the CAR point estimates.

In Panel B of Table 1, the CHPs display similar patterns to the CARs, show-
ing that the IPO underperformance starts as early as one year in event time. For
example, the average CHP relative to NYSE/AMEX is —4.6% per annum at a
one-year horizon, and —4.4% per annum at a three-year horizon. The average
CHP relative to NYSE/AMEX decreases to -2.9% per annum at the five-year
horizon. In summary, these results confirm Ritter's (1991) results that there exists
a strong IPO underperformance effect for IPO performance in event time relative
to aggregate benchmarks.

B. Calendar-Time IPO Returns

While Table 1 confirms IPO underperformance in event time, Schultz (2003)
argues that there is no evidence of IPO underperformance in calendar time. Schultz
proposes that higher stock prices result in more equity issuance, and that this
pseudo-market timing is behind the underperformance in event-time, equal-weight-
ed abnormal retums. Calendar-time abnormal retums based on weighting each
calendar period equally are not affected by psuedo-market timing and Schultz ar-
gues that there is no IPO underperformance in calendar time. We show here that
IPO underperformance is also seen in calendar time, contrary to Schultz's claims.
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Schultz (2003) concentrates only on one-month holding period retums. To
examine calendar-time retums of IPO retums, we generalize the holding period
to look at horizons longer than one month, up to a 60-month holding period. In
month t, we form an IPO portfolio by placing an equal amount of money in all
IPOs that have gone public over the last F months (the portfolio formation period).
This portfolio is held from time tiot + k. kt time t + k, the portfolio is rebalanced
to only hold IPOs that have gone public over the last F months. Hence, our
calendar-time IPO portfolio retums represent the retums on an equal-weighted
portfolio of IPOs, each IPO no older than F months. We examine holding period
retums over ^ = 1 to A: = 60 months. After computing the calendar-time IPO
raw retums, we subtract the benchmark retums from the IPO portfolio retums to
compute benchmark-adjusted holding period retums in calendar time.

Because of the large number of IPO delistings (see Table 1), it is important to
adjust for the delisting retum. Shumway (1997) recommends assigning a delist-
ing retum of -0 .3 to an arbitrary firm delisting from CRSP and Shumway and
Warther (1999) recommend using a corrected retum of -0.55 for a delisting from
the NASDAQ stock exchange. In computing their delisting retums, Shumway and
Warther track the retums of firms after they delist using data from the Pink Sheets
(published by the National Quotations Bureau) up to 100 days post-delisting. In
the post-1970 sample, almost all (93%) delisting IPOs delist from NASDAQ, so
we assign a delisting retum of -0.55 to all delisting IPOs. This correction is
likely to be conservative for two reasons. First, IPOs tend to have low event-time
retums relative to the average seasoned, listed firm. Second, the final retum from
a firm that liquidates might not be received for many months after the delisting.
Delisting retums are important for investable calendar-time retums because the
money retumed from investing in the delisting firm is reinvested in the IPO port-
folio going forward.

Table 2 reports calendar-time IPO returns over various holding period hori-
zons. The average retums are annualized to make comparison easier. To use all
the data, we report the means using overlapping observations, but the point es-
timates are very similar using non-overlapping observations. To account for the
moving average errors induced by the overlapping observations, we compute t-
statistics with Newey and West (1987) standard errors, using a lag length of one
less than the holding period horizon. Note that the case of yt = 1 involves no
overlapping observations. If we compute the standard errors with simple OLS t-
statistics, the magnitude of the OLS f-statistics is approximately four to six times
larger than the robust /-statistics reported in the table.

When we consider a portfolio of firms that have gone public over the last
year (F = 12), Panel A of Table 2 shows that there is no statistically significant
underperformance for one-month holding period retums, no matter which bench-
mark is used. In fact, for a one-month horizon, IPOs that have less than a one-year
listing anniversary outperform the NYSE/AMEX index by 1.4% per annum. This
is the result reported by Schultz (2003).''

'Schultz (2003) takes a universe of IPO retums up to 60 months following the offering, and then
considers calendar-time retums of these firms. This corresponds to a one-month holding period hori-
zon, but Schultz's formation period interval changes over time and is weighted toward selecting IPOs
with short and intermediate histories post-offering.
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TABLE 2

Calendar-Time IPO Returns

Table 2 reports mean holding period returns (unadjusted) and mean adjusted-holding period returns, relative to
NYSE/AMEX, NASDAQ, and SMALL benohmarks. We form a portfolio of iPOs that have gone pubiic within the past
one year (top panei) or past three years (bottom panel) and hold this portfoiio for various holding period horizons. The
means are computed with overlapping observations, so we report Newey-West (1987) f-statistios in parentheses with a
lag length of one less than the hoiding period horizon in months. Ail the returns in the table are reported in annualized
terms. We denote significance at the 5% and 1 % ieveis with * and **, respectively. The sample period starts from January
1970 for the three-year formation period and from January 1972 for the one-year formation period. Both sampies in Panels
A and B end at December 2001.

Holding Period
Horizon (months)

Panel A. Formation Period = 1 Year

Mean return(unadjusted)

Mean return(NYSE/AMEX)

Mean return(NASDAQ)

Mean return(SMALL)

Panei B. Formation Period = 3 Years

Mean return(unadjusted)

Mean return(NYSE/AMEX)

Mean return(NASDAQ)

Mean return(SMALL)

1

0.159**
(2.81)

0014
(041)

-0.015
(-0.65)

-0.024
(-0.74)

0.146**
(2.80)

0.002
(0.07)

- 0 0 2 7
(-1.30)

-0.035
(-1.39)

6

0.129*
(2.56)

-0.014
(-0.42)

-0.053*
(-2.21)

-0.057*
(-2.05)

0.110*
(2.33)

-0.031
(-0.95)

-0.069**
(-2.97)

-0.073**
(-3.03)

12

0.110**
(2.59)

-0.035
(-1.02)

-0.072*
(-2.58)

-0075**
(-2.92)

0110*
(2.57)

-0.035
(-1.01)

-0.072*
(-2.60)

-0074**
(-3.18)

36

0.120*'
(2.72)

-0.039
(-0.66)

-0.075
(-1.42)

-0.102*
(-2.62)

0.121*
(2.59)

-0.036
(-0.58)

-0.073
(-1.33)

-0.099*
(-2.44)

60

0.139*
(2.17)

-0.023
(-0.23)

-0.069
(-0.72)

-0.124
(-1.80)

0.114*
(2.31)

-0.071
(-0.85)

- 0 1 3 0
(-1.71)

-0.206**
(-3.21)

However, as we increase the holding period from one month to 60 months,
the IPO underperformance puzzle reemerges. Beginning with a holding period
horizon of six months, the point estimates in Table 2 are negative relative to all
three benchmarks. At a one-year horizon, there is an average performance of
—7.2%, and —7.5% per annum relative to the NASDAQ and small stock indices,
respectively. This underperformance is significant at the 5% level. The average
performance of IPOs relative to the total NYSE/AMEX benchmark is -3 .5% per
annum at the one-year horizon, but is not statistically significant. Although the
IPO performance relative to the NYSE/AMEX and NASDAQ indices is statisti-
cally insignificant at the 5% level at the 60-month horizon, the magnitude of un-
derperformance is 2.3% per annum for the NYSE/AMEX benchmark and around
7% per annum for the NASDAQ benchmark. For a 60-month holding period hori-
zon, the IPO portfolio underperforms small stocks by an economically very large
12.4% per annum, but this is only statistically significant at the 10% level.

For the three-year formation period reported in Panel B, the evidence of
calendar-time underperformance is even stronger. At the six-month horizon, the
performance point estimates are already large and negative, and statistically sig-
nificant relative to the NASDAQ (-6.9% per annum) and small stock (—7.3%
per annum) indices at the 1% level. The performance at a 12-month horizon
is -3.5%, -7.2%, and -7.4% per annum relative to NYSE/AMEX, NASDAQ,
and small stocks, respectively. While underperformance relative to the broad
NYSE/AMEX index is not statistically significant, the underperformance is statis-
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tically significant at the 5% level for the NASDAQ benchmark and significant at
the 1% level for the small stock benchmark. The negative performance estimates
increase in magnitude at the 60-month holding period horizon, where the IPO per-
formance point estimates are - 7 . 1 % , -13.0%, and -20.6% per annum relative to
NYSE/AMEX, NASDAQ, and small stocks, respectively. The underperformance
in calendar time relative to small stocks is particularly large and highly statisti-
cally significant for all holding period horizons greater than six months. Holding
a portfolio of IPOs that go public over the last three years produces stronger ev-
idence of long-term underperformance than using a formation period of just one
year, because the longer formation period selects more seasoned IPO firms. Note
that underperformance is greater for more seasoned firms in event time: IPOs
actually tend to outperform benchmarks in the first six months of event time,
but tend to underperform significantly over three to five years post-issue in event
time.^

Why does the IPO underperformance show up in calendar time only for long
holding period horizons? First, by focusing only on one-month holding periods,
Schultz's method does not capture the long-term performance of IPOs. Table
2 focuses on the effects of changing the formation period of the IPO portfolio
and the holding period horizon. As Schultz holds the IPO portfolio only for one
month, the average retum is heavily weighted toward short-mn and intermediate-
term event-month retums. Once we consider different holding period horizons
and different formation periods, the IPO underperformance reemerges. Longer
holding period horizons, or longer portfolio formation periods, allow the port-
folio to contain more seasoned IPOs, which have relatively low average retums.
Finally, Schultz also ignores the retums of delisting IPO firms. As shown in Table
1, there is a remarkable proportion of IPO firms that delist from CRSP within five
years of issue.

Having made the case for long-mn IPO underperformance in both event time
and calendar time in the post-1970 sample, we now examine the hypothesis that
the IPO underperformance may be due to small sample or Peso problem effects.

III. The Model

A. Capturing a Small Sample Problem

The essence of a small sample explanation for long-mn IPO underperfor-
mance is that the data we observe may not contain the same number of high flying
IPOs that we expect from the population distribution. We illustrate this intuition
in Figure 1. Suppose that IPO returns are drawn from one of three states: i) an
extraordinary state eaming 70% over benchmark, ii) an average state where the

*We comment on but do not report the results if we make the extreme assumption that a dehsting
IPO retums all of its money back to an investor immediately (so there is a delisting retum of 0.0%).
In this case, with a three-year portfolio formation period, the IPO portfolio performance is —0.2%,
-4.4%, and -9.2% per annum relative to NYSE/AMEX, NASDAQ, and small stocks, respectively.
These averages are statistically insignificant at the 5% level. However, this scenario is extremely
unrealistic because many IPOs that delist go bankrupt, and the remainder of any invested money is
only realized with a long lag. In fact, we view the Shumway and Warther (1999) delisting correction
of -0.55 as conservative, given the very low event-time IPO retums reported in Table 1.
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IPO eams the benchmark retum, and iii) an underperforming state where the IPO
underperforms the benchmark by 5%. In population, the extraordinary state oc-
curs 2% of the time, the average state occurs 70% of the time, and the bad state
occurs 28% of the time. The extraordinary state has a very high mean, but occurs
rarely so it represents a draw of a highly successful IPO. The average abnormal
retum for the population is then 0.02 x 0.7 H- 0.7 x 0 H- 0.28 x (-0.05) = 0%.

FIGURE 1

A Simple Example of the Small Sample Bias

Figure 1 shows a populalion versus small sample distribution, iilustrating how ex post underperformahce might be realized
in a small sample generated from a population distribution with no ex ante underperformance.

Population (unobserved)

/ Extraordinary, 70%
2% /

/ 70%
^̂ -̂  Benchmark, 0%

28% \ ^
^ Bad,-5%

Average Excess Retum
= 0.02x0.7+0.7x0+0.28x(-0.05)
= 0%

Small Sample (observed)

Extraordinary, 70%

/ 70%
<— Benchmark, 0%

29%\
^ Bad,-5%

Average Excess Retum
= O.OlxO.7+O.7xO+O.29x( .̂O5)
= -0.75%

In a small sample, we may not observe the same frequency of extraordinary,
average, or underperforming states as the population frequency. Suppose that
in a small sample we observe that extraordinary retums constitute only 1 % of the
retums instead of the 2% frequency of extraordinary states in the population. If the
proportion of the benchmark retums remains the same as the population, at 70%,
then we over-sample low retum states. In this case, the average abnormal retum
for the sample is then negative at 0.01 x 0.7-1-0.7 x 0-1-0.29 x (-0.05) = -0.75%.
Hence, we observe an average underperformance in the sample, but this is because
the population distribution and the small sample population are dissimilar. If we
were to observe the same frequency of extraordinary retums in the sample as
the proportion of extraordinary retums in the population, then there would be no
average underperformance in the small sample.

For this type of Peso problem intuition to be reasonable, we would hope that
the distribution of IPO retums in data already contains some large observations—
the Peso explanation requires that we have not observed enough similar large
observations in a small sample. Panel A of Table 3 shows that the right-hand tail
of the distribution of monthly IPO returns encompasses some spectacular one-
month retums. The magnitude of the top 10 monthly returns is large enough
that firms can easily increase their value by 3-6 times within one month, and
the highest one-month IPO return is over 2,500% (which corresponds to Club-
Theatre Network in its 21st event month). For comparison, the average monthly
retum for an IPO in our sample is 0.83% per month. Panel B shows that the
top 10 IPOs in the five years after their issue date approximately double in price
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every year.' Clearly, Table 3 shows that the observed distribution of IPO retums
includes some impressive retums. According to a small sample explanation, the
population distribution of IPO retums must contain a higher frequency of these
types of retums, or even more spectacular retums.

TABLE 3

Top Pei^orming IPOs

Table 3 reports the highest 10 one-month IPO returns in Panei A. In Panei B, we report the 10 iPOs with the iarqest 5-vear
post-issue cumulative returns. The returns in the tabie are in ievels, not percentages. The sampie period is January 1970
to December 2001.

Panel A. Top 10 Highest Monthly Returns

Name

Club-Theatre Networi( ino
SoloPoint Inc
Smith (Vlioro Software Inc
Viisage Technoiogy Ino
Expioration Co
Humascan inc
EC02 Inc
SI(yMaii ino
Western Power & Equipment Ccrp
i-iungarian Broadcasting Corp

Monthiy Return

25.0
5.91
5.64
5.61
5.60
4.50
4.36
3.99
3.88
3.58

Panel B. Top 10 Largest 5-Year Cumulative Returns

Name

CMG information Services Inc
American Power Conversion
Networi< Appiiance ino
Ascend Communications inc
SDL inc
Ryan's Famiiy Steai< iHouses
Zoitei< Cos inc
StrataCom inc
Cisco Systems inc
Liz Ciaiborne Inc

5-Year
Cumuiative

Return

147
70.3
55.8
50.3
42.4
40.3
34.6
31.7
24.2
24.1

Event Month

21
28
54
59
38
30
33
25
59
36

5-Year
Annuaiized
Cumuiative

Return

1.72
1.35
1.24
1.20
1.13
1.10
1.04
1.01
0.91
0.91

issue Date

05/15/90
06/06/96
09/18/95
11/08/96
11/19/79
08/12/96
10/22/92
12/11/96
06/13/95
12/20/95

issue
Date

01/25/94
07/22/88
11/21/95
05/12/94
03/15/95
07/13/82
11/06/92
07/21/92
02/16/90
06/09/81

It would be tempting to construct a population distribution of IPOs by just
sampling repeatedly from the extreme IPO retums in Table 3. However, we cannot
be sure that these retums represent the true distribution of star performers, partic-
ularly under the null hypothesis of no ex ante IPO underperformance. The IPO
data have an overall average underperformance and the data may more correctly
represent the appropriate distribution under the altemative hypothesis that there
exists long-run IPO underperformance. The tme distribution of the outstanding
performers under the null of no ex ante IPO underperformance is not directly ob-
servable. However, we now describe how the distribution of IPO retums under
the null of no ex ante underperformance can be inferred from a rigorous model
that captures the simple intuition of the picture in Figure 1.

'interestingly, Microsoft is not among these finns. For comparison, the cumulative five-year an-
nualized post-IPO retum of Microsoft is 72%,
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B. A Markov Switching Model

Extending the simple intuition of Figure 1 into an econometric model re-
quires several steps. First, instead of discrete possible outcomes (for example,
outperforming, benchmark, and underperforming) for an IPO's retum in excess
of benchmark r,,, we specify a series of distributions that depend on a state Si, pre-
vailing at time t. If the prevailing state corresponds to an outperformance state,
then the IPO's retum is drawn from the corresponding outperformance distribu-
tion. We specify these state-dependent distributions to be normal. Second, we
specify the states Si, to be persistent so if a firm has been an outperformer in the
past it is more likely to be an outperformer next period. Finally, we observe the
draws of actual IPO returns, but the econometrician does not observe the sequence
of states so the estimation method must infer the states from the data.

Formally, this is a Markov switching model of the type introduced by Hamil-
ton (1989), where the states su follow a Markov chain, and the IPO draws are
from time-varying mixtures of normals.'" As Bekaert, Erb, Harvey, and Viskanta
(1998) and Timmermann (2000), among others, comment, mixtures of normal
distributions are easily able to capture heteroskedasticity, fat tails, and other fea-
tures of equity retums. At each point in time, conditional on no delisting, the
abnormal IPO retum r,, follows the process,

(6) ru = fx{si,)-¥a{su)ei,,

where e,, is IID N{0,1) and the state st, follows a Markov chain that can take
values 5,7 = 1 , . , . , A' states. For simplicity, we specify that the draws of e,-, and si,
are uncorrelated across firms in event time.

In equation (6), the IPO retum is normally distributed conditional on the state
Si,. However, as the prevailing state Si, changes across time, the IPO retums are
drawn from different distributions. This causes the unconditional IPO retum to
be nonnormal and heteroskedastic. We can regard each IPO as a new draw from
the DGP in equation (6), The states .?,-, are drawn from a common Markov chain
that causes the individual IPO retums to be correlated.

We estimate models with K = 2 and K=3 states. In the case of two regimes,
the Markov transition probability matrix takes the form.

where Pu =Pr(i;, = l|,y,-,,_i = 1) andP22=P''{si, = 2\si^,-i —2) are constants and
are the same across firms. The stable probability TTI = Pr{si, = 1) corresponding
to the system is given by

I - P 2 2

'"Markov switching models have been used to model equity retums by, among others. Turner,
Startz, and Nelson (1989), Hamilton and Susmel (1994), Hamilton and Lin (1996), Ramchand and
Susmel (1998), Perez-Quiros and Timmermann (2001), and Ang and Bekaert (2002),



578 Journal of Financial and Quantitative Analysis

which satisfies the relation n = FI-K, where TT = {-KI 112)'-^^
\f K = 2, we can think of the two distributions corresponding to su ==1,2

as corresponding to an outperformance distribution and an underperformance dis-
tribution. While each IPO may be in a different state, we restrict the transition
probabilities of the IPO states to be the same across IPOs, The transition proba-
bilities are persistent and capture the notion that a firm that has outstanding returns
in the past is more likely to be an outperforming firm in the future.

We estimate the model under the null of zero expected abnormal outperfor-
mance, so we place restrictions on the model parameters such that E(r,r) = 0. This
involves the restriction:

(8) Eh,] = TTi/ii-i-7r2At2 = 0,

Hence, there is a restriction involving the conditional means of the distributions
of each state,

(9) M2 =
2

which we impose in the estimation. Note that this restriction only involves the
means of the state-dependent distributions, but not the volatility parameters.

For A"=3 states, we can interpret the states as representing periods of outper-
formance, benchmark performance, or underperformance. In this case, we specify
the transition probability matrix of all IPO returns to be:

(10)
Pu 1-Pii 0

P21 P22 1 - P21 - P22

0 I-P33 P33

where / ' „ = Pr{si, = l|.?,-,,_i = 1), P21 = Pr{su = l|.s,-,,-i = 2), P22 = Pr{si, =
2|i,,i-i = 2), and P33 = Pr{si, = 3|5,-,,_i = 3). With the specification in equation
(10), firms transit through the benchmark performance state on their way from
the outperforming state to the underperforming state, and vice versa. This means
that we do not allow a firm to jump immediately from outstanding performance
today to underperformance next period. However, we also consider the case of an
unrestricted three-state 77 matrix where a direct transition from outperformance
to underperformance can occur.

To impose the null of zero expected abnormal performance in the case of
A" = 3 states, we impose the restriction,

(11) E[r,r] = TTi/xi-f7r2/Z2H-7r3/i3 = 0,

where TT, — Pr{si, —j) are the stable probabilities of the system. Rearranging, we
can write fi3 as a function of fi2 and /ii:

(12) fJ,3 = —(-7r2At2 - T T l / i l ) .
7T3

"Estimating the model under time-varying transition probabilities is not computationally feasible
and cannot be done with conjugate draws (see the Appendix), However, because the rejection of the
null of no underperformance is so strong and the fact that the IPO draws in event time are correlated
through the stable distribution of the states ,5;,, we believe that generalizing the model to include time-
varying probabilities would not significantly change our results or conclusions.
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Furthermore, we identify the abnormal retum in state sn = 2 as the average per-
forming state with an expected abnormal retum of zero, so we set fi2 = 0. This
yields the restriction:

(13) M3 =
7r3

How does this model capture the Peso problem intuition? We impose the
null of expected benchmark performance through equations (9) or (13). How-
ever, we allow a state where an IPO may potentially spectacularly outperform the
benchmark retum. The estimation reconciles the apparent IPO underperformance
in data by estimating the parameters of the outperformance distribution such that
the null is satisfied. We do not directly observe the outperformance distribution
in data, but the model is able to capture the Peso effect through the transition
probabilities and the state-dependent mean parameters.

To complete the model, we specify the attrition process of IPOs. This is
important, because as Table 1 shows, 40% of IPOs delist within five years after
their issue date.'^ We first model the delisting process and then, conditional on
no delisting, apply the Markov switching model of IPO retums in equation (6).
We draw the delisting time T, of the ith IPO from a geometric distribution with
probability p,

(14) Pr{Ti = k) = {l-pf-'p,

where T, is in months. If T, < 60, then the IPO delists within five event years
post-issue, whereas if T, > 60, we observe a full five-year event history of that
IPO's retums. Hence, equation (14) represents a truncated geometric distribution.
We assume that the probability p is the same across all firms, and the delisting
time of each IPO is IID. Conditional on T,, the IPO's retums are drawn from
the Markov switching process in equation (6) for T,- observations. A more com-
mon specification for a point process such as T, is a Poisson distribution, but we
show that a Poisson distribution cannot fit the persistent decay pattem of the IPO
attrition rates observed in the data.

The model estimation is non-trivial because of the large cross section of
firms (4,843 IPOs over the full sample). Recent advances in Bayesian methods
allow us to estimate the model using Gibbs sampling techniques following Albert
and Chib (1993). We provide details of the estimation method in the Appendix.
The Gibbs sampler has several advantages. First, because we model the delisting
process and the retum of an IPO is specified conditional on no delisting, direct
construction of the likelihood function is highly complex. The Gibbs sampler
operates on a series of conditional distributions, which are well specified in our
model. For example, the distribution of the delisting time, T,, is a geometric
distribution (equation (14)) and the distribution of the IPO retum conditional on
Ti and each state si, is a normal distribution (equation (6)).

'•̂  An altemative way to model IPO delisting is to include a fourth, absorbing state into the transition
probability matrix. However, the algorithms used to estimate regime switching models require that the
transition matrix be ergodic to filter the states that are unobserved to the econometrician, particularly if
the initial state is set to be the stable probabilities of the Markov process. See, for example, Hamilton
(1989),
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Second, instead of performing a complex optimization, we construct the pos-
terior distribution of the parameters by simulating from each conditional distribu-
tion in tum. This is much easier than maximizing a highly nonlinear likelihood
function. Finally, the Gibbs sampler accounts for parameter uncertainty, which
we take into account by analyzing the small sample performance of the CAR and
CHP statistics. We estimate the models using monthly IPO retums adjusted by
the CRSP value-weighted NYSE/AMEX index of post-event time and use a 60-
month event horizon. We also estimate (but do not report) the models for Ritter's
(1991) original data sample, where the event horizon is 36 months.

Naturally, our statistical inference depends on the ability of our DGP to
match data and to successfully capture a Peso problem. We believe that our
model is more than fiexible enough for this purpose because the superstar state
can potentially have a very large expected retum, the superstar state is potentially
persistent or very fleeting, and there are no restrictions on the fraction of retums
belonging to each state.

C. Estimation Results

We first comment on the results of the delisting process and then describe
the estimated parameters of the Markov switching process. The point estimate
of the geometric probability p in equation (14) is 0.008. This parameter is very
precisely estimated with a standard error of 0.001 because of the large number of
IPOs in the sample. Table 4 reports the actual and average numbers of surviving
firms for various event months for our geometric distribution in equation (14) and
a Poisson distribution for comparison. The fit of the geometric distribution is very
good, but shghtly underestimates the actual number of surviving firms after one
year (4,433 versus 4,767 in the data), while matching almost exactly the actual
number of surviving firms after five years (3,015 versus 2,965 in the data). In
contrast, a Poisson distribution fitted to data has an extremely poor fit, predicting
that all firms should delist within five event years because it cannot match the
observed slow attrition rate of IPOs in data.

TABLE 4

Actual and Expected Number of Surviving Firms

Table 4 reports the actuai number of IPOs surviving k months from issue in the second oolumn (which
as the first row of Tabie
geometric distribution in

1). The column labeled
equation (14), while the

is the same
Geometric reports the expected number of surviving firms from the
iast column reports the expected number of surviving

Poisson distribution fitted to the data. The sampie period is January 1970 to December 2001.

Event Month

1
6

12
24
36
48
60

Actual

4,843
4,830
4,767
4,369
3,882
3,411
2,966

Geometric

4,843
4,652
4,433
4,026
3,656
3,320
3,015

firms from a

Poissoh

4,843
4,843
4,843
4,713
2,050

89
0

We report the parameter estimates of the Markov switching part of the DGP
in Table 5. We report the mean of the posterior distribution of each parameter
together with the standard deviation of the posterior distribution in parentheses.
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Panel A reports results for the two-state model. We can interpret state 1 as the
overperformance state, which has a mean of 4.2% per month and a large monthly
volatility of 40%, and state 2 represents an underperformance state, which has a
mean of -0 .8% per month with a monthly volatility of 12%. The estimates of
the transition matrix 77 in equation (7) show that the underperformance state is
very persistent with a half-life of 22 months.'-' In contrast, a firm has a 25% prob-
ability of moving from the outperformance state to the underperformance state
each month. The transition probabilities in 77 correspond to stable probabilities
of 16% (84%) for state 1 (2)."*

TABLE 5

Parameter Estimates

We report parameter estimates of the two- and three-state models in equation (6). For the two-state modei in Panel A, the
state-dependent means fj(s,)) are estimated subject to the restriction in equation (9) with the transition matrix given by
equation (7). For the three-state models in Panel B, the means M(S/() are estimated subject to the restriction in equation
(13). The model labeled Constrained n is estimated with the transition probability matrix n described in equation (10),
while the unconstrained estimation imposes no constraints on the transition probability matrix. The vector -K represents
the stable probability of the system. The sample period is January 1970 to December 2001.

State ^ a Transition Matrix n n

Panei A. Two-State Modei

0.000

-0.013

Unconstrained n

\ (0.001)

0.264
(0.044)
0.000

-0.006
(0.000)

0.042
(0.002)

-0.008
(0.000)

Panei B. Three-State Modei

1 / 0.227 \
(0.014)

Constrained n

3

0.396
(0.003)
0.122

(0.001)

0.731
(0.011)
0.102

(0.000)
0.223

V (0.001)

0.605 \
(0.010)
0.214

(0.002)
0.141

\ (0.001) /

0.750 0.250
(0.005)
0.047 0.953

(0.001)

0.684
(0.005)
0.011

(0.001)
0.000

0.316

0.943
(0.001)
0.073

(0.002)

/ 0.289 0.576
(0.027) (0.022)
0.070 0.930

(0.000)
0.002

V -

(0.004)
0.001

(0.000)

0.000

0.046

0.927

0.136

0.000

0.997
(0.001)

0.157

0.843

0.021 N̂

0.603

0.376

/ 0.018 \

0.158

0.824

Panel B of Table 5 reports the results of the three-state model. We report
two estimates, one with a transition probability matrix II following equation (7),
where the IPO cannot directly transition from being an outperformer to an under-
performer and the other estimate with an unconstrained 77 matrix. In the con-
strained 77 estimation, the distribution of IPO retums in the outperformance state
1 has a mean of 22.7% per month with a very high monthly volatility of 73.1%.

"Because the Markov states are persistent, the model endogenously generates persistence of IPO
retums. However, the large standard deviations of IPO retums make this autocorrelation small in the
model and hard to pin down in the data. In the three-state model with a constrained transition matrix,
the implied IPO autocorrelation is —0.0006 with a posterior standard deviation of 0.0004. The slight
negative autocorrelation results from star performers being more likely to transform into benchmark-
performing or underperforming firms than underperforming IPOs becoming star performers. In the
data, the mean autocorrelation across IPOs is —0.0443 with a cross-sectional deviation of 0.1680.
Thus, our model and IPO data can shed little light on stock-level reversals or momentum.

'''The implied monthly standard deviation for IPO retums implied by the two-state model is 19.3%
per month, which we can compare to the IPO retum volatility of 19.2% in data. The corresponding
number for the three-state model with the constrained 77 matrix is 19.4%.
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This state occurs, on average, 2.1% of the time. While this state has a very high
average retum, the very top IPO retums in our sample reported in Table 3 comfort-
ably exceed this average retum, which suggests that some of the high IPO returns
in data could be drawn from this type of outperforming state. The benchmark
performance state 2 has zero expected excess retums by constmction and has a
standard deviation of 10.2% per month. This is the predominant state for IPOs
with a stable probability of 60.3%. The underperformance state 3 has a mean of
—1.3% per month and a slightly higher standard deviation of 22.3% per month.

This estimation reflects our intuition of a benchmark performance state and
an underperformance state from which the majority of IPOs are drawn, and an
extraordinary state that occurs rarely (2.1% on average). The transition matrix
77 shows that each state is persistent with IPOs that are benchmark (underper-
formers) having a 94.3% (92.7%) chance to remain in that same state the fol-
lowing month. The outperformance state is less persistent with a probability of
Pii = 0.684 of remaining an outperformer next period, conditional on being an
outperformer this period.

The unconstrained 77 estimation also broadly reflects this same intuition ex-
cept that the stable probability of the benchmark perfomiance state 2 decreases to
15.8% (compared to 60.3% in the constrained 77 estimation), and the stable prob-
ability of the underperformance state 3 increases to 82.4%. Once we allow firms
to immediately switch from being winners to underperformers, only 28.9% of
outperformers remain outperformers the next month, while 57.6% and 13.6% of
outperformers transition to benchmark performance and underperformance states,
respectively. Thus, with an unconstrained 77 matrix, the winner state 1 becomes
even more extreme having a stable probability of only 1.8% and an expected re-
tum of 26.4% per month.

An altemative interpretation of the estimation with three states and an un-
constrained 77 matrix is a system where the majority of IPOs underperform with
an average retum of —0.6% per month. A smaller number of IPOs have higher
retums in line with the benchmark, while a very small fraction (1.8%) have ex-
tremely high retums on average. Once an IPO is drawn into the loser state 3 or
transitions into this state, it is very likely to remain a loser with a probability of
99.7% per month. A benchmark firm is likely to continue to perform in line with
its benchmark status with a probability of staying a benchmark firm of P22=0.930.
In contrast, the rare outperforming IPO is unlikely to continue its extraordinarily
high retums, with a probability of remaining an outperforming IPO of Pi 1 =0.289,
and very quickly transitions to becoming a benchmark performer or an underper-
former. Nevertheless, the unconstrained estimation results maintain the intuition
of only a small minority of IPOs enjoying very high average retums.

The Bayesian estimation also allows us to compute Bayes factors, which
provide a method of testing the null of the two-state Markov model against the
three-state models.'^ The Bayes factor is used to compute the posterior odds
ratio.

'^Traditional maximum likelihood ratio tests are computationally very difficult to calculate be-
cause of the presence of nuisance parameters that must be integrated out in the test statistics (see, for
example, Davies (1987)).
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where Hi and H2 are the models being tested, Y is the data, and p{Hi) is the prior
on model Hi and p{H2) is the prior on model H2. For example, in our setting Hi
would be a two-regime Markov model and H2 would be a three-regime Markov
model. Given non-informative priors on both models, the posterior odds ratio
simplifies to the Bayes factor, Bn = p{Y\Hi)/p{Y\H2).

We compute the Bayes factor using the harmonic mean estimator of Kass
and Raftery (1995) and find extremely strong evidence in favor of the three-state
models against the two-state model. The value of 2 In B12 in testing the two-state
model against the three-state model with a constrained II transition matrix is over
7,000, while the value of 2 In B12 for the two-state model against the unconstrained
n model is over 8,800. Any value above 10 is interpreted as very strong evidence
against the null model. These values are consistent with the tight posterior stan-
dard error bounds for the parameters in Table 5, which result from the fairly large
panel of IPOs used in the estimation. We also find strong evidence of the unre-
stricted n three-state model against the constrained 77 three-state specification
with a value of 2 In fi^ above 1,400. Nevertheless, we examine the implied small
sample statistics of IPO underperformance for all our Markov models.

IV. Is IPO Underperformance a Statistical Fluke?

In this section, we ask whether it is surprising to measure an average long-
run IPO underperformance in a small sample and how likely it is that a small
sample contains a lower frequency of outperforming IPOs than the population
distribution.

A. Robust Statistical inference

To conduct robust small sample inference, we generate a small sample dis-
tribution of the CAR and CHP statistics (in equations (2) and (4)) measuring IPO
performance. We construct the small sample distribution from the estimates of
the Markov switching model in Table 5 and the delisting process in equation (14)
as follows. First, we draw the delisting time T,- for firm i from the distribution in
equation (14). If Ti > 60, we simulate a full 60-month event-time series for the
IPO. If Ti < 60, the firm delists prior to the 60-month horizon. Then, we generate
a time series of IPO retums for firm i from the Markov process in equation (6) for
the number of surviving periods of the IPO.'*

We simulate 4,843 IPO firms for each small sample. This corresponds to the
number of IPOs in our sample in our post-1970 sample period. In the sample,
we compute the CAR and CHP statistics and store their values. We repeat this
procedure 10,000 times. In this way, we obtain a distribution of small sample

'*In the rare instance that a simulated retum is less than —1 in equation (6), we assume the firm
delists at that time. Note that actual delisting retums are not used in computing the event-time CAR
and CHP statistics.
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CAR and CHP statistics to which we can compare the point estimates of the CAR
and CHP in the actual IPO data. Note that the small sample distribution of the
IPO underperformance statistics is constructed under the null of zero expected
abnormal IPO retums because the DGP is estimated under this null. We also take
into account parameter uncertainty by drawing from the posterior distribution of
the parameters. That is, each one of the 10,000 simulated samples is constructed
using a different draw from the posterior distribution of the parameters. However,
simulating only from the posterior mean of the parameters produces almost iden-
tical results because of the tight posterior standard deviations of all the parameter
estimates.

B. Empirical Results

Table 6 reports the small sample distribution of CAR statistics from each
model. We report results for the full sample in Panel A. The CAR(NYSE/AMEX)
estimated in the data for the 60-month event horizon is -0.227 (see Table 1). In
contrast, under the two-state model, the CAR small sample distribution is posi-
tively skewed, even though there is no expected abnormal IPO performance under
the null. Barber and Lyon (1997), Kothari and Warner (1997), and Brav (2000)
also report skewed CAR statistics in small samples. The mean and median of
the small sample CAR distribution is 0.041, much higher than the -0.227 CAR
estimate in data. Note that while the small sample CAR distribution for the un-
constrained n three-state model, with a mean CAR of 0.002, produces less bias
than the two-state or the constrained II three-state model, the mean and median of
the small sample CAR distribution is still much higher than the CAR point statis-
tic of -0.227 in the data. However, the large difference per se does not rule out
a small sample explanation for the post-1970 IPO underperformance. In order to
do this, we must look at the entire small sample distribution to compute a p-value.

Table 6 reports various percentile values for a more detailed picture of the
small sample CAR distribution. The data point estimate of -0.227 falls nowhere
in the simulated small sample distribution for either the two-state or the three-state
models. For the two-state model, the 0.5% cutoff is -0.026. The 0.5% cutoff for
the three-state models for the constrained transition probability estimation and
the unconstrained transition probability matrix II, respectively, are -0.037 and
-0.081. Since the effective p-value of the -0.227 CAR estimate under the small
sample distributions is zero, we overwhelmingly reject the hypothesis that small
sample bias can account for the IPO underperformance in the post-1970 sample.

While a small sample explanation may be very unlikely over the post-1970
data, a valid question is that when Ritter (1991) first raised the question of long-
run IPO underperformance his shorter data sample might not have been able to
rule out a Peso problem explanation. Perhaps it is only with the addition of the late
1980s and 1990s data that the IPO effect has become statistically robust. Panel B
of Table 6 investigates this possibility. We use the original Ritter (1991) sample
from 1975 to 1984. Using Ritter's original event horizon of 36 months, the CAR
in his data sample is —0.251. To construct the CAR small sample distribution cor-
responding to Ritter's data, we reestimate the models over Ritter's sample period
and simulate small samples of 1,524 firms.
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TABLE 6

CAR Small Sample Distribution

Table 6 reports summary statistics of the smail sampie distribution of the CAR statistic (equation (2)) by simulating from
the posterior distribution of the parameter estimates reported in Tabie 5 using 10,000 simuiations. Panel A corresponds
to the sampie of IPOs going pubiic from January 1970 to December 1996 with an event horizon of 60 months. Panei B
corresponds to Ritter's (1991) originai sampie, consisting of IPOs going pubiio from 1975 to 1984, with an event horizon
of 36 months.

Two-State
Model

Panei A. Fuii Sampie (CAR in data = - 0.227)

Mean
Std. Dev.
Median

Percentiles
0.5%
1.0%
2.5%
5.0%

95.0%
97.5%
99.0%
99.5%

0.041
0.026
0.041

-0.026
-0.020
-0.010
-0.002

0.085
0.093
0.102
0.109

Panei B. Ritter's (1991) Data. 1975-1984 (CAR in data = -0.251)

fvlean 0.008
Std. Dev. 0.044
fvledian 0.007

Percentiies
0.5% -0.104
1.0% -0.092
2.5% -0.077
5.0% -0.064

95.0% 0.078
97.5% 0.093
99.0% 0.110
99.5% 0.122

Constrained
n

0.043
0.031
0.044

-0.037
-0.030
-0.019
-0.008

0.094
0.104
0.115
0.122

0.010
0.042
0.010

-0.098
-0.088
-0.072
-0.059

0.079
0.092
0.109
0.118

Three-State
Model

Unconstrained
n

0.002
0.033
0.001

-0.081
-0.073
-0.061
-0.052

0.057
0.068
0.082
0.092

0.010
0.069
0.008

-0.161
-0.143
-0.119
-0.099

0.128
0.154
0.182
0.209

Panel B of Table 6 shows that the -0.251 estimate of Ritter's CAR also over-
whelmingly rejects the null hypothesis. The 0.5% percentile values range from
—0.098 for the constrained 77 three-state model to -0.161 for the unconstrained
n three-state model. Again, this is nowhere close to the —0.251 data estimate.
Hence, Ritter's (1991) original sample also strongly rejects the notion that his
original IPO underperformance findings are merely due to small sample effects.

In Panel A of Table 7, we compare CHP estimates in data with simulated
CHP small sample distributions. Over the full sample, the CHP(NYSE/AMEX)
statistic is —0.137 over five years, corresponding to an annualized number of
-0.029 per annum in Table 1. Note that the CHP small sample distributions
are biased upward, ranging from 0.078 for the two-state model to a very large
0.463 for the constrained 77 three-state estimation. The constrained 77 has a much
larger probability of remaining in the extraordinarily high performing state than
the unconstrained 77 matrix. This allows for some highly positively skewed draws
that result in a strong positive bias for the long-horizon CHP statistics.

Similar to the CAR results in Table 6, the small sample CHP distributions in
Table 7 overwhelming reject the null hypothesis of zero expected abnormal IPO
performance. The data CHP estimate of -0.137 falls nowhere close to the bot-
tom 0.5% or 1% cutoff of the small sample CHP distributions. In particular, the
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TABLE 7

CHP Small Sample Distribution

Table 7 reports summary statistics of the small sample distribution of the CHP statistic (equation (5)) by simulating from
the posterior distribution of the parameter estimates reported in Table 5 using 10,000 simuiations. Panel A corresponds
to the sample of IPOs going pubiic from January 1970 to December 1996 with an event horizon of 60 months. Panel B
corresponds to Ritter's (1991) originai sample, consisting of iPOs going public from 1975 to 1984, with an event horizon
of 36 months.

Three-State
Model

Two-State
Modei

Panel A. Full Sample (CHP in data = -0.137)

Mean
Std. Dev.
Median

Percentiies
0.5%
1.0%
2.5%
5.0%

95.0%
97.5%
99.0%
99.5%

0.078
0.064
0.070

-0.037
-0.028
-0.014
-0.002

0.181
0.214
0.274
0.343

PanelB. Ritter's (1991) Data. 1975-1984 (CHPin data =

Mean
Std. Dev.
Median

Percentiies
0.5%
1.0%
2.5%
5.0%

95.0%
97.5%
99.0%
99.5%

0.187
0.224
0.169

-0.013
0.004
0.025
0.045
0.374
0.439
0.548
0.651

Constrained
n

0.463
3.155
0.319

0.090
0.106
0.133
0.154
0.871
1.227
2.120
3.571

-0.127)

0.234
0.334
0.187

-0.006
0.008
0.030
0.050
0.514
0.681
0.987
1.499

Unconstrained
n

0.080
0.123
0.064

-0.054
-0.044
-0.028
-0.016

0.211
0.265
0.387
0.520

0.124
1.100
0.041

-0.159
-0.142
-0.122
-0.102

0.457
0.687
1.283
2.289

most negative 1% cutoff is —0.044 from the unconstrained II three-state model.
Hence, the data again resolutely rejects a small sample explanation of IPO under-
performance.

In Panel B, we examine the CHP distributions for the Ritter (1991) sample.
In Ritter's data, the CHP statistic is -0.127. While this point estimate lies below
the 0.05% tail for the two-state model and the constrained 77 three-state model,
the left-most tail of the three-state unconstrained II model does encompass the
-0.127 value. However, we still reject that the CHP value is equal to zero at the
5% level using a two-sided test (with the lower 2.5% cutoff equal to —0.122).

In our analysis, we use the NYSE/AMEX benchmark to constmct the ad-
justed IPO retums to estimate the model and to construct the small sample dis-
tributions of the IPO performance statistics. We resoundingly reject the null
hypothesis that small sample effects could be responsible for the underperfor-
mance relative to the NYSE/AMEX benchmark. This benchmark does not pro-
duce the largest or most significant point estimates of IPO underperformance in
either event time or calendar time from Tables 1 and 2. Hence, other aggregate
benchmarks that produce more severe measures of event-time or calendar-time
underperformance, such as the NASDAQ and small stock benchmarks, can only
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result in more overwhelming rejections of a small sample explanation of IPO un-
derperformance ,

One possible use of our Markov switching model that we do not examine
here is that the model may be able to identify those firms where poor IPO per-
formance is very likely (the underperforming state), or those IPOs whose perfor-
mance is extremely good (the star performer state). Since these states are persis-
tent, an active investor may be able to infer the probability of each regime for each
IPO and form a trading strategy to go long in the most promising IPO firms and
short the least promising IPOs, We leave this application of the model to future
research,

C. Comparative Statics

In this section, we ask how extreme the distribution of winners must be to
fail to reject the null of zero average long-run underperformance in the small
sample distribution. Since the structure of the model is able to capture a Peso
problem, this is a useful exercise because we can compare the estimates of the
model to a distribution of superstar IPO retums (state 1) where we would not be
surprised to observe the degree of IPO underperformance present in the actual
data. In this exercise, we focus on the original Ritter (1991) CAR statistic.'^ That
is, which characteristics of the superstar state are necessary to conclude that the
IPO underperformance may be a Peso problem?

Our goal is to determine the value of parameter /ii, the expected retum of
the superstar state, where the small sample distribution implied by the model
could resemble the observed degree of IPO underperformance in data. To do
this, we gradually increase the value of ni from its estimated value in the three-
state Markov model. As we change /ii, we simulate from the point estimates of
the parameter values in Table 5, keeping all other parameters the same, except
we alter /j.^ so that we maintain the null of zero expected abnormal performance
in equation (11). Figure 2 plots the p-value of the CAR point statistic in data,
starting from the parameter estimates in Table 5 where the p-value is zero, as a
function of ;Lti, This is a two-sided p-value and, hence, represents two times the
proportion of the small sample distribution lying to the left of the long-horizon
CAR point statistic of —0,227, The top (bottom) row of Figure 2 performs this
comparative static exercise over the full (Ritter (1991)) sample. The left- (right-)
hand column reports the case for the constrained (unconstrained) transition prob-
ability three-state model.

Figure 2 shows that in order for a small sample explanation to account for the
degree of IPO underperformance in data, the expected retum of the winner state
has to be tmly spectacular. Over the full sample, we must increase ni to over 3,00
or higher per month to produce a/7-value higher than 0,05, From the stable prob-
ability of state 1 in Table 5, this means that over 2% of all IPOs have to triple their
values every month. There are clearly some IPOs that more than triple their value
occasionally, such as the top 10 highest monthly returns reported in Panel A of

"if we repeat the exercise using the CHP statistic, there is no choice of parameter values for the
distribution of superstar IPO retums that can produce small sample distributions where we fail to reject
the null at a 95% confidence level.
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FIGURE 2

p-Value of the CAR Statistic as a Function of fj.^

Each plot graphs the p-value of the CAR statistic as a functicn of ;.»i, the mean of the IPO return in the outperforming state,
in the three-state Markov model. We start with the point marked with a circle, which represents the p-value from Table 6,
which is zero, corresponding to the estimated value of f i , in Table 5. The top row displays the results using the full sample
data and the bottom row displays results for the Ritter (1991) sampie.

0.06
Constrained n System, Full Sample Unconstrained n System, Full Sample

Table 3, but these represent the top 10 among 243,338 total one-month event re-
tums in the full sample of 4,843 firms. Similarly, in the Ritter (1991) sample, the
estimate of ^i must be approximately 2.00 for the constrained 77 estimation and
close to 15.00 for the unconstrained II model. Thus, an absurd number of spec-
tacularly performing firms must be present in the population distribution in order
for a small sample explanation to account for the IPO long-run underperformance
phenomenon.

The plots in Figure 2 further strengthen the conclusion that a small sample
effect is highly unlikely to be driving the IPO long-mn underperformance puzzle.
Instead, the plots suggest that the low retums of IPO firms over the last three
decades are robust and that the IPO long-run underperformance puzzle is not a
statistical fluke.

V. Conclusion

The long-run underperformance of IPOs has been an active topic in the IPO
literature over the last decade since Ritter (1991). Yet, recent work, most notably
by Gompers and Lemer (2003), suggests that the post-1970 long-run IPO under-
performance could be simply a statistical fluke. Our study presents new evidence
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supporting the existence of the IPO underperformance effect. First, we show that
IPO underperformance remains robust both in event time and in calendar time,
Schultz (2003) fails to find IPO underperformance in calendar time because he
considers only a short one-month holding period horizon. Calendar-time IPO un-
derperformance reappears with longer holding period horizons or longer portfolio
formation periods.

Second, we present evidence suggesting that IPO underperformance is highly
unlikely to be the result of a statistical fluke. We construct a Markov switching
model that captures small sample or "Peso problem" effects. At each point in
time, IPO retums have the potential to be drawn from superstar states with very
high expected retums, A small sample underperformance puzzle may result if we
observe too few of these draws ex post, even if the population distribution exhibits
no ex ante underperformance. In our estimation, we impose the null of no ex ante
IPO underperformance.

We find that the small sample distributions implied by the model for the
event-time statistics measuring IPO underperformance do not even come remotely
close to encompassing the point statistics in the data. Hence, the null hypothesis
that a small sample effect is responsible for IPO underperformance is overwhelm-
ingly rejected. Moreover, the degree of outperformance required for a small sam-
ple explanation to hold requires that approximately one in 50 IPOs must at least
triple their values every month.

By establishing the robustness of the IPO underperformance puzzle, we lay
the groundwork for future research to economically explain this important, sta-
tistically robust phenomenon. Some explanations that have been proposed to
date include eamings management (Teoh, Welch, and Wong (1998)), constraints
on shorting IPOs combined with heterogeneous expectations of investors (Miller
(1977)), or behavioral biases (Hirshleifer (2001)), among others.

Appendix

We estimate the model in Section III using Gibbs sampling, adapting the methodol-
ogy developed by Kim, Nelson, and Startz (1998) and Kim and Nelson (1999), The set of
parameters we estimate is

0 = iP,a\p,),

where a^ = [aj (T | ] , p. = [/xi /U2], P = [Pii P22] for the two-state Markov model, a^ =
[aj aj I''!], P = [MI M2 1^3]' ^ = [̂ 11 P21 P22 P32] for the three-state Markov model with re-
stricted transition probabilities, and d-^ = [crf a\ a\\, / !=[/ i i /U2 M3], P— \P\\ P12 P2\ P22 Pn
P33] for the three-state Markov model with unrestricted transition probabilities. For esti-
mation purposes, we parameterize (T| as af = o-f (1 + /!2) and 0-3 as erf = cr? (1 + /12)(1 + /13),

Let Ti denote firm i's surviving period and let n be the number of firms in the sample,
WedefineaMarkovstate vectorof firmias,r7-, = [5,,i 5,,2 , , , ,$,,7-,], for firms i = l , 2 , . . . ,n,
and a stacked state vector of all firms as ST = [si,i ... sij, S2,i... S2,T2 • • • Sn,\... in,^„],
where T = X^"_i Ti. Similarly, we write the vector of retums for the I'th IPO as ftj =
[n.i n,2 ••• ri,7-J and denote the collected vector of retums for all IPOs as f7-=[ri,i ...rlJ^
• • • rn,\ ... rn,Tn]. Since the states are unobserved to the econometrician, we treat them as
parameters and draw them via Gibbs sampling. Hence, the random variables to be drawn
are O and the stacked Markov states vector sj.
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The Gibbs sampling algorithm iterates successively over the following conditional
distributions. Each iteration simulates a drawing from the joint posterior distribution of all
the state variables and the model's parameters given the data:

(PI) Generate Sr, conditional on /i, a^, P, and fr,
(P2) Generate p., conditional on a^, ST, and fr,
(P3) Generate a^, conditional on p., ST, and h, and
(P4) Generate P, conditional on ST.

Note that in (P2), by the null hypothesis that p.'n = 0 in equation (11), only /ii is generated
and the value of the other conditional mean parameter is inferred. In (P4), P only requires
knowledge of the states ST. All the conditional distributions (PI) to (P4) are also con-
ditional on the delisting times, which are exogenously given by a geometric distribution.
Conditional on observing the delisting time, we can separate the estimation of the geo-
metric distribution and the Markov switching DGP because we assume that the Markov
switching process holds conditional on the delisting time, and the delisting process is un-
affected by the parameters of the Markov DGP. We describe drawing parameters from
each conditional distribution in tum.

(PI) Drawing ST. Conditional on p., a'^,P, and rr^. We assume independence of retums
across firms. Thus, we can generate Jr., conditional on firm / surviving to T,. We then
stack Jr, to construct h. To generate ST,, we first run the Hamilton (1989) filter to obtain
the conditional distributions g{si,,\ri,t) for all /.

Let V'l,'-! denote the information set up to time ? — 1 for firm i, which represents
lagged firm / retums. Given Pr[j,,,_i = k\tpi,i-i] at the beginning of time t, and using
Bayes' rule,

(A-1) Pr[si,, =7, Ji,,-i = k\tpi,i-i] = Pr[si,i =M,i-\ = k]Pr[si,,.-i = k\ipi,,-i],

where Pr[si,i =y|j,,,_i] = Pr[si =j\s,-i = k] are the transition probabilities P, which are
firm invariant.

We update the probability Pr[j,,, =j, j,,,_i = k\tjji,,-]] using

(A-2)

f{n,,\si,, =j, Si,i-i = k, ipi,,-i

where K is the number of states and

since the state-dependent parameters Hs, = IJ,{S,) and a^, = cr(j,) are the same across
firms.

We can obtain g(j|,7-,|̂ 7-,) by summing over the K states using the standard Hamilton
(1989) updating recursion.

(A-3)

The last run of the Hamilton (1989) filter provides us with g(j,,r,|rri), from which we can
generate STJ. We then backward generate j , , , , conditional on r,,, and J;,,+I, ? = Ti — 1, T, —
2 , . . . , 1, using the multi-move Carter and Kohn (1994) algorithm adapted by Kim and
Nelson (1999). This uses the following result:
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where g(ii,(+i |5i,,) =g(i,+i \s,) is the transition probability. We calculate Pr[s:^i=k\si,,+i, r,-,,]
using

(A-5)
n,l =j\fi,t)

The Carter-Kohn (1994) algorithm simulates .s,,,, / = 1,2,. . . , 7, as a block from the joint
distribution g{sTi |/J, of̂ , P, rr,). The algorithm is run for each firm / separately.

Next, we describe draws from (P2) through (P4) for a three-state Markov model with
unrestricted transition probabilities as a general case. Our other models are special cases
(and involve a reduced number of parameters).

(P2) Drawing p.. Conditional on 9^ ,ST, and fr. Equation (6) can be rewritten in the fol-
lowing form,

if we let i = 1,2,3, and define:

- _ J 1 '\isi, = k
^ ' •**" ~ \ 0 otherwise.

Dividing both sides of equation (A-6) by asi,, we obtain

where r\ = ru/aa, and Xkn = SMI/TSJ,. Note that CTJ,, takes only the values of CTJ,, which
are common to all firms, but the actual value CTJ,, depends on firm / and time t. Using this
notation, we can rewrite equation (A-8) in matrix notation as

(A-9) R^ = Xpi+V, V^N{O,IT),

where R^ is the stacked vector of transformed retums /?* = [r | , . . . rf j.^ • • • ''I l • • • ''I r j
for all n firms and X = [xi, X2, JC3,] stacks the values of xu, for the different values of the
regime k across the rows and all the time series of firm retums across the columns.

If we assume a normal prior for /i of jX\d^ ~ Af(foo, Bo), the posterior distribution is
given by \x\a'^,s~T,f, ~ N{bi,Bt), where b^ = (S^ ' + X'X)~\B~^bo + X'R^) and Bi =
(B^' -I- X'X)~'. We assign a value of zero to bo and B^\ which effectively represent a
non-informative prior.

(P3) Drawing a^. Conditional on /I, sj, and fj. By definition of Sku in equation (A-7), we
can write

for the vector of realizations of conditional variances corresponding to the stacked retums
fr, of firm ;, conditional on the stacked regime realizations Jr. for firm i. We can redefine
this as

(A-10) a\ = a\(\+ i2,7/l2)(1 -I- ?3i//!2)(1 -I- 53,-,/j3),

where a\ = a\(\+h2) and a\ = a\(\+h2){\_ + hi). Using this specification of CTI, /t2, and
hi, we first generate a\, and then generate h2 = (\ + hi) and h-i = (\ + hi) to indirectly
generate a\ and a\.

To draw a\, conditional on hi and hi, we divide both sides of equation (6) by

-I- S2\,h2){\ + Sii,h2){\ + Siu
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to obtain

(A-11) r*, = fiiXu, + ti2X2i, + MX3(, + vt,, v*. ~ IIDiV(O,

where
* n,

V,* =
V (1 + S2i,h2)(l + S3i,h2){l

We stack each firm's retums in equation (A-11) to write

r* = iJ,iXi, + iJL2xl, + Hixl, + V

We choose an inverted gamma distribution as a conjugate prior for cr\, so a\\h2,hi,li
~ /G((i'o/2), ((5o/2)), Kim and Nelson (1999) show that the posterior distribution is also
an inverted gamma distribution given by <j\\h2,hi,(i, ST, h ~ IG{{v\/2), {5\/2)), where

vi=V(, + T and 5i=5o + XlLi ('"* "~ A î̂ it — M2̂ 2( ~" M3̂ 3()- We assign a value of zero to
fo and 5o to represent a non-informative prior.

To generate /i2 = (1 + ̂ 2), conditional on cf Eind h^, we divide both sides of equation
(6) by \/(T\{\ +S3i,h}) and stack all firm retums to write

where r** stacks all transformed firm returns r** = n,/^a]{l-^-s^uh) and Xh stacks all
transformed realizations xl*, = lut/y/CT\{\ +'s3i,h3).

By specifying an inverted gamma distribution for the prior as_IG[{v2/2), (52/2)),
the conditional posterior distributioii of h2 = \ + h2 is given by h2\crj.,h3,p.,ST,fT ^
lG{{u3/2), (53/2)), where 1/3 = 1̂2 + T2, and ^3=^2 + Y,N,ifT - M i < - ^24* - /X3JC37)-
The ^et N2 represents the realizations of states 2 or 3 across firms, N2 = {t: su = 2 or 3}
and T2 is the total number of simulated states 2 or 3 across firms. We assign a value of zero
to 1/2 and 52 for the prior, which effectively represents agnostic beliefs.

We generate /i3 = 1 + /13 in a similar fashion to generating /12 = (1

(P4) Drawing P = [Pi, P12 P21 P22 P32 P33], Conditional on ST. Conditional on the states
ST, the transition probabilities are independent of h and the other parameters of the model.
Since the transitions of each firm are independent of the transition of each other firm, we
can use the combined transitions of all firms to estimate P, We introduce the notation
njk, j,k= 1,2,3 to represent the total number of transitions from state s,-i^j to s, = k,
t = 2,3,...,T, where we consider the total transitions of all firms. Define Pjj = Pr[s, 7̂
y'k'-i =71,7 ^ 1 , 2 , 3, and Pjk = Pr[s, = k\s,-i =j,s, ^7] for k ^ j . Then, Pjk = Pr[s, =
k\s,-i =j] = Pjic X {1 — Pjj) for k ^ j . Similarly, define % to be the number of transitions
from state St-i =j tos, ^ j .

By taking the Beta family of distributions as conjugate priors, Kim and Nelson (1999)
show that_the posterior distributions of Pjj are given by Beta distributions PJJ\ST ~ Beta{ujj+
tijj, Ujj + rijj), where 1% and Ujj are the known hyperparameters of the priors. We assign a
value of zero to Ujj and Ujj.

Drawing the other off-diagonal elements in the 77 transition probability matrix is a
straightforward generalization of the method used to draw the diagonal transition proba-
bilities Pjj. For example, given Pu, P12 can be coinputed by P12 = P12 x (1 — Pu), where
P12 is drawn from the posterior Beta distribution Pn\sT ~ Beta(Mi2 +ni2, M13 + nu), where
M12 and U13 are the known hyperparameters of the prior Beta distribution. Similar to the
draws for Pjj, we assign a value of zero to uu and M13. Finally, conditional on Pu and P12,
the adding up constraint implies P13 = 1 - Pu - P12, The other off-diagonal elements in
n are similarly drawn.
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